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THE FINITE-DIMENSIONAL P, SPACES
WITH SMALL A

BY
M. ZIPPIN'

ABSTRACT

It is proved that there is a positive function ¢(e) defined for sufficiently small
£ >0 such that lim,_,¢(¢)=0 and for every integer k and every k-
dimensional P,,, space E, d(E,l1X) <1+ ¢(e).

The purpose of this paper is to continue the investigation begun in [1]. Using
the ideas and the notation of [1] we will prove the following:

THEOREM 1. There exists a positive function ¢ (¢) defined for sufficiently smal,
e >0 with lim,. _., ¢ () = 0 such that for every integer k and every k-dimensiona.
P... space E, d(E, 1% <1+ ¢(¢).

Recall that E is called a P, space if whenever F D E there is a projection P of
F onto E with |P||<y. We denote by d(E, X) the Banach~-Mazur distance
between the spaces E and X.

As explained in [1] (see the introduction), in order to prove Theorem 1 i
suffices to prove the following.

THEOREM 2. There exists a positive function v(e) defined for sufficiently smal
£ >0 with lim._,v(e)=0 such that for any positive integer n if there is ¢
projection P of 17 onto a k-dimensional subspace E with |P||<1+¢, ther
d(E,1H)<1+v(e).

The following partial result, proved in [1], will be our main tool.

ProPOSITION.  There exists a positive function y(a) defined for sufficientl
small a >0 with lim, .o¢(a) =0 such that for every n, if R is a projection of I
onto a k-dimensional subspace F with |R||<1+ a, then the following holds :

* Author was partially supported by N.S.F. Grant MCS 79-03042.
Received April 16, 1981

359



360 M. ZIPPIN Israel J. Math.

(*) There is a subset A C{1,2,---,n}, there exist an integer h > k(1 - ¢(a))
and h pairwise disjoint subsets A, A,, -, As of A and there are i(1), i(2),:--,
i(h) in A such that |Re .y, [[Z 1— ¢(a). Moreover, for each q € A, | Re, | =
1-¢(a), and there is a j, 1 =j = h, with |Re, — Re.,|| = ¢(a).

We use here and below the following notation: if x =3 ,ae €17 and
Cc{1,2,---,n} then xjc=Zccae.

We will prove Theorem 2 by iterating the process described in the above
Proposition. In order to be able to do that without losing control over the
constants we will need the following three lemmas. We assume here that P is a
projection on I} with | P|| <1+ ¢ and that P is represented by the matrix (a),
i.e., Pe, = Z}_, a;e; for all unit vectors {e, }i-,.

In the sequel we will define the constants 6 = 8(¢), 1-p =1-pu(e), n=
n(e), A = A(g) and B = B(e). These constants are all functions of ¢ tending to 0
with ¢.

Lemma 1. Let GC{1,2,--,n}, let H={i:|Pe;.||>1—8} where § =¢'?
and put p =(1+28)"'. Let B = B(E) = the unit ball of E and let C denote the
convex hull of {* Pe, }icoun. Then B C ™' C. In particular, if span{Pe, }.cc# E
then H# Q.

PROOF. Let ¢ € E* satisfy the inequality | ¢(Pe;)| = u forall i € G U H. Let
M = maxs;=.] ¢(Pe;)| =| $(Pe,)|. Then, since Pe, =3;_,a,,¢; = -, a,, Pe; we
get that

Msp 5 la+M 3 |ay=M 3 [a,+u(i+e= 3 |a,]).

feGuH i£GUH €GUH i#GUH
If M>p then, clearly, & GUH hence |Pey.|l=Zico|a,|=1-6 and
consequently, putting a = 2,z6u5]a; |, we get that

M=p(l-a)'(l+e—-a)=ps'(5+e)<1.

It follows that [|¢ || <1 and hence, by the Hahn-Banach theorem, B(E)Cp."'C
as claimed.

We will need the following precise description of a subspace of /7 which is
‘“almost’ invariant under P.

DervimioN.  Let K C{1,2,---, n}, put X(K)=span{e}ick and let 0< A <1.
The subspace X(K) will be called A-invariant if for every i€K,
"Pe,’"( "’Pe,' "§A.

The purpose of the next lemma is to prove the existence of A-invariant
subspaces supported outside certain sets.



Vol. 39, 1981 FINITE-DIMENSIONAL P, SPACES 361

LEMMA 2. Let G, H, 8 and . be as in Lemma 1. Assume that || Pe, || =} for
ali€Gandletn =8"=¢",K={i:|Pe||Z1—n}and A =10u"" 7. Then
X(K) is a A-invariant subspace.

Proor. It follows from Lemma 1 that for each 1=i=n, Pe,=ag+ ph
where g =3,cca;Pe;, h =ZcubPe;, Ziccla)|=1=Zculb| and |a|+(B|=
i '(1+¢). If, in particular, i € K then

1-n sl Pesdslal 3 lallped+i8l( 3 161)a+e
=ila|+1+e)|B|stlal+A+e)w A +e)—]al)

=(l+eyp —lalG+e)

hence |a|=2((1+ ey u ™' +n —1)=3n if ¢ is small enough. It follows that for
each i € K there is an element h; = 2,4 b; Pe; such that

(1) 2 lbi[=p™" and [Pe—h]=4n.
j€EH

Consider now an element Pe; = 2., a,;e. where j € H. It follows from the
definition of H that Z,ec|ai| <8+ & <.
We claim that if ¢ is small enough then

) > |ay|=4m.
keK*

To prove (2) it suffices to show that Zycoc—k|ax;| =37n. But for k €G- K
we have that || Pe, . || =1+ ¢ —n and therefore

1-851Pesl = | 3 oy Peu)
S(l+e) 3 lagl+A+e—n) D law|+(1+e) 2, lay]
keG keG -k kEK

=(1+e)(d+e)+(1+e—1) keg;_xlak,-|+(l+s)(1+e - ke;.x'“"’l)'
It follows that

Y lagl=n'((A+e)+(1+e)(S+e)—1+8)=3n7'6=39

keG-K

if £ <207 and (2) is thus proved.



362 M. ZIPPIN Israel J. Math.

Let T be the operator defined on I7 by Tx = xx. Then for each i € K we
have, by (1) and (2), that

”TPe.—Pe,"§6‘n +"Th,_’h.”§61’] +" 2 b,,(TPe,_Pe,)
j€H

=6m+u " max || TPe — Pe||=6n +p 'max 2, |ay|=10p""n = A.
jEH JEH KEKS®
It follows that X(K) is a A-invariant subspace. This proves Lemma 2.

LemMA 3. Let X be a Banach space, let X, be a subspace of X and let T be a
projection of X onto X, with || T|| =1+ vy, where y <1/20. Let P be a projection on
X with ||P||=1+ vy such that || TPx — Px|| = vy||x|| for all x € X,. Then there is a
projection Q on X, such that |Q|<1+20y and ||Qx — Px||=20y for all
xe B(Xo)

Proor. Define the operator S on X, by Sx = TPx + (I — P)x for all x € X,.
Then clearly ||Sx — x| = y]|x|| and hence S is an invertible operator from X,
onto a space YCX with |[S[S1+vy and ||S7'|=(1—-v)". Let U be the
operator defined on X by Ux = STx + (I — T)x. Then || Ux — x || S ||STx — Tx| =
(14 y)v|lx]| and therefore |U||=1+2y, |U'|S(1~-2y)" and |U'-I|=
2y(1—2v)™". Since U is one to one and Ux = Sx for every x € X, we have that
U ™' maps Y onto X, hence Q, = UPU/y is a projection of Y onto its subspace
Z = TP(X,) which happens to be also a subspace of X,.

Also | Qol|= (1 +2y)(1+ y)(1—2y) ' =1+8y. Note that X, is ‘“close’” to Y
(in the sense that || Sx — x || = y || x || for all x € X,) and there is a projection T of
X onto X, with | T||=1+ vy. Hence, again, a standard perturbation argument
yields the existence of a projection V of X onto Y such that |[V|=
(1+yY(1—-v)'=1+4y and | V- T|=2y. Clearly Q,V is a projection of X
onto Z and hence Q =Q,V,,, is a projection of X, onto Z with ||Q||=
(1+8y)(1+4y)<1+20y such that

|Q- P, I=IQV - PT|=| UPU" v - PT|
<|UPU"'V—-PU'V|+|PU™V-PU" T||+|PU"' T - PT|
|- 1P WVI+IPIU- Y =TI+ P TIU - 1

=2y +y)A+4yyY+(Q+ )1 +4yR2y +2(1+ vV y(1+4y)
=20vy.
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This concludes the proof of Lemma 3.
A direct consequence of Lemma 3 is the following:

COROLLARY. Let P be a projection on I} with |P||=1+ ¢, let {e.}}-, be the unit
vector basis and let K C{1,2,---,n}. Assume that X(K)=span{e}icx is a
A-invariant subspace with A <1/20. Then there is a projection Q on X(K) with
|QJI=1+20A such that || Pe; — Qe:||=20A for all i EK.

ProOF OF THEOREM 2. We first use the Proposition with R =P anda = ¢ to
get a subset A (to be denoted by G;) which satisfies (*). If span{Pe, };cc, = E
then, by Lemma 1, the proof is complete because (*) implies that there exist
integers i(1,1), i(1,2),---, i(1,h(1)) in A and pairwise disjoint subsets G,
Giz,° ", Giay Of Gy such that || Peiq ’|| = 1- y(e) and for each q € G, there
is a j,1 = j = h(1) with || Pe, — Pe.o.|| = W(¢). It follows that {Pe ., }:) is a basis
of E as asserted. On the other hand, if span{Pe, },cs, # E we use Lemma 2 with
G = G, and we get a subset K = K, in the complement of G, such that X(K)) is
a A-invariant subspace (for the projection P). The Corollary implies that there is
a projection Q = Q, on the space X(K,) (which is isometrically isomorphic to
I'*") with |Q,|=1+B8 where B =20A. Moreover, for each i€K,,
Q. e — Pe;|| = B. Using the Proposition with R = Q, and « = 8 we get a subset
A =G,CK, which satisfies (*). Thus there exist integers i(2,1),
i(2,2),++,i(2,h(2)) in G, with h(2)>|K,|[(1—¢(B)) and these are pairwise
disjoint subsets G:.i, G, ", Gz.. of G, such that || Qe.c.y,, '|| =1-y(B) and
for each g€ G, |Qie, — Qieiepll=¥(B) for some j,1=j=h(2). Since
| Pe; — Qie:|= B for all i €K, we get that | Peiq.,, |Z1—¢(B)~ B and for
each g € G, there is a j,1=j = h(2), such that ||P‘e.,"— Peop|l=¢(B)+2B. If
span{Pe, }iec,uc, = E then the proof is complete. If not, we use Lemma 2 with
G = G, U G, and we get a subset K = K, of the complement of G, U G: such
that X(K;) is A-invariant. On X(K) = I'*' we have, by the Corollary, a “‘good”
projection Q, which is “close” to P. Proceeding in this manner we get after m
steps (m =k) pairwise disjoint sets G,,G,,--,G. such that E =
span{Pe; }ic uy.,6, and in each Gi we get pairwise disjoint subsets G,
G2, ' Grnay and h(k) distinct integers i(k,1), i(k,2),--+,i(k,h(k)) in G
such that "Peuknlc”"%l— ¢(B)— B and for each ¢ € G, there is a j,1=j=
h(k), with || Pe, — Pe .|| = ¢(B) + 2B. Clearly the elements {Pe . ;) }}%m, form
a basis of E which is “close” to a natural [, basis. This proves Theorem 2.
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