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THE FINITE-DIMENSIONAL SPACES 
WITH SMALL A 

BY 

M. ZIPPIN'  

ABSTRACT 

It is proved that there is a positive function ~ (e )  defined for sufficiently small 
e > 0  such that l im+_o4,(e)=0 and for every integer k and every k- 
dimensional P~+, space E, d(E, I~)< 1 + r 

The purpose of this paper is to continue the investigation begun in [1]. Usin~ 

the ideas and the notation of [1] we will prove the following: 

THEOREM 1. There exists a positive function 6 (e ) defined for sufficiently smal. 
e > 0 with lim+ +,, ~b(e ) = 0 such that for every integer k and every k-dimensiona 
P~+~ space E, d(E,l~)< 1 + ok(e). 

Recall that E is called a P~ space if whenever F 3 E there is a projection P ol 

F onto E with IIPII< ~,. We+ denote by d ( E , X )  the Banach-Mazur distance 
between the spaces E and X. 

As explained in [1] (see the introduction), in order to prove Theorem 1 il 

suffices to prove the following. 

THEOREM 2. There exists a positive function v( e ) defined for sufficiently smal 
e > 0  with l im~_ov(e)=0 such that for any positive integer n if there is 
projection P of 17 onto a k-dimensional subspace E with I I P l l < l + e ,  ther 
d(E, l~) < 1 + v(e). 

The following partial result, proved in [1], will be our main tool. 

PROPOSITION. There exists a positive function d/(a) defined for sufficientl) 
small a > 0 with l im.+oO(a)=  0 such that for every n, if R is a projection of l'~ 

onto a k-dimensional subspace F with II R II ~ 1 + . ,  then the following holds : 
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(*) There is a subset A C{1,2 , . . . ,  n}, there exist an integer h > k(1 - 0 (a) )  

and h pair,vise disjoint subsets A I , A 2 , ' . . , A h  of A and there are i(1), i (2) , . . . ,  

i (h)  in a such that IIRe,o),.,ll >= 1 - q,(~).  Moreover, for each q E A, IlReq,.ll => 

1 - qs(a), and there is a j, 1 <-j <-_ h, with IIReq - Re,o,II <- O(a) .  

We use here and below the following notation: if x =E"=~a~ei ~ 17 and 

C C{1,2 , . . . ,  n} then X~c = Ei~ca, ei. 

We will prove Theorem 2 by iterating the process described in the above 

Proposition. In order to be able to do that without losing control over the 

constants we will need the following three lemmas. We assume here that P is a 

projection on 17 with Ilell < 1 + e and that P is represented by the matrix (a,j), 

i.e., Pe~ = Z~=~ ajie~ for all unit vectors {e~ }~'=~. 

In the sequel we will define the constants 8 = 8(e) ,  1 - i x  = 1 -  i t (e) ,  *1 = 

r/(e), )t = )t(e) and/3 = /3(e ) .  These constants are all functions of e tending to 0 

with e. 

LEr~A 1. Let G C { 1 , 2 , . . . , n } ,  let H={i:llPe,, .ll>l-8} where 8 = e  "2 

and put # = (1 + 28) -~ . Let B = B ( E )  = the unit ball of E and let C denote the 

convex hull of { +- Pe, },~c~,. Then B C tz -~ C. In particular, if span {Pe~ },~c ~ E 

then H ~  0 .  

PaooF. Let q~ E E* satisfy the inequality I~b(Pe,)l _=/x for all i E G U H. Let 

M = max~.,j~ I da(Pej) I = I~b(Peq)l. Then, since Peq = E~=, ajqej = E,=~ a~Pej we 

get that 

M<=tz ~ la~l+M Y. la~,l---M ~, la~,l+~z(l+e- ~ la,#l). 
jEGUH j ~  G O H jl~ G U H j~GtJH 

If M >  Ix then, clearly, qti~ G U H hence IIPe,,.~U = Y~,~.la~l <-- z - 8 and 

consequently, putting a = Ej~G u g[ a~l ,  we get that 

M_-</z(1 - a ) - '  (1 + e - a)--</zS-' (8 + e ) <  1. 

It follows that I1,  II < 1 and hence, by the Hahn-Banach theorem, B ( E )  C tz -' C 
as claimed. 

We will need the following precise description of a subspace of 17 which is 

"almost"  invariant under P. 

DEFINITION. Let K C{1,2 , . . . ,  n}, put X ( K )  = span{e,},~K and let 0 < A < 1. 

The subspace X ( K )  will be called A-invariant if for every i E K ,  

II Pe~ - Pe, II <= A. 

The purpose of the next lemma is to prove the existence of ,~-invariant 

subspaces supported outside certain sets. 
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LEMMA 2. Let G, H, 8 and tx be as in Lemma 1. Assume that H Pe,,o, II <- �89 for 

all i ~ G and let rl = 8 ''2 = e '" ,  K = {i : IIPe, f~, I1 => 1 - n} and a = 10Ix -1,7. Then 

X ( K )  is a A-invariant subspace. 

PROOF. It follows from Lemma 1 that for each 1 <= i <= n, Pe, =otg + [3h 

where g=Em~aiPe j, h=~.mnbjPej, X , ~ I a ,  I--1--X,~HIb~I and / a l + l / 3 l -  < 

Ix- ' (1+ e) .  If, in particular, i E K then 

1 - 7  ----IIPe,.~][----la I • I a, [[IPe,.,~ll+ 1/31 ( , ~ ,  Ib, I ) ,1  + e )  
iEG 

_-<-~1,:, I + (1+ ,01,81 -<�89 o, I + ( l+ ,O( i x - 'O  + , 0 -  I,~ I) 

= (1 + e)2ix - ' -  t a  l(�89 e) 

hence Iot I ---- 2((1 + e)  2 Ix-I + 77 - 1) _-__ 3~7 if e is small enough. It follows that for 

each i E K there is an element h, = F,s~Hbs, Pe j such that 

(1) ~ Ib,,l_-<ix-' and [IPe,-h, ll<-4n. 
iEH 

Consider now an element Pes = X~=~ akjek where ] E H. It follows from the 

definition of H that XE~I akj [ < 8 + e < rl. 
We claim that if e is small enough then 

(2) E [akj [----<at/�9 
k E K  c 

To prove (2) it suffices to show that Yk~CO-Klak.jl------3r/. But for k E G" - K  

we have that II Pek I~. II ---- 1 + ~ - n and therefore 

~,1 + ~,,, + .,+,1 + ~ - . )  ~2_.  i o., I + ,  +~)(~ + . -  . ~ _ .  f .., I ). 

It follows that 

lak~lN'o-~((l + e)2 +(l  + e) (8 + e ) -  l + 8 )N3~- t  8 = 371 
k E  - K  

if e < 20 -~ and (2) is thus proved. 
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Let T be the operator defined on 17 by Tx = XlK. Then for each i E K we 

have, by (1) and (2), that 

[[TPe'-Pe'II<=6~+IITh'-h'II<<-6~+II~b"(TPe'-Pe')I[,~, 

=< 6 r / + / z - '  max II rPe, - Pej II = 6 r /+  # - '  max ~ [a~j [ =< 10~- '  n = X. 
j E H  j E H  k E K  r 

It follows that X ( K )  is a h-invariant subspace. This proves Lemma 2. 

LE~eaA 3. Let X be a Banach space, let Xo be a subspace of X and let T be a 

projection of  X onto Xo with II T II ~ 1 + 3', where 3' < 1/20. Let P be a projection on 

X with II P l[ --< 1 + 3' such that [1TPx - Px [I --< 3' Itx II for all x E Xo. Then there is a 

projection O on Xo such that II o II < 1 + 203' and II Ox - Px II--< 203' for all 
x ~ n ( X o )  

PROOF. Define the operator S on Xo by Sx = TPx + (I  - P)x  for all x E X0. 

Then clearly II S x - x  II----v IIx II and hence S is an invertible operator  from X0 

onto a space Y C X  with IIS11----1+3' and IIs-'11_-<(1-3') - ' .  Let U be the 

operator defined on X by Ux = STx + (I  - T)x. Then [[ Ux - x II----IlSZx - Tx II---- 

(1+ 3')3'11xll and therefore 11u11----1+23', IIu- ' l l--<(1-m3') -' and IIu-'-II1---- 
23'(1 - 23')-'. Since U is one to one and Ux = Sx for every x E Xo we have that 

U- '  maps Y onto Xo hence Oo = UPU?~ is a projection of Y onto its subspace 

Z = TP(Xo)  which happens to be also a subspace of Xo. 

Also 11Oo11----(1 +23,)(1 + 3")(1 - 23')-' = < 1 +83'. Note that X,, is "close" to Y 

(in the sense that Ilsx - x II---- 3'llx II for all x ~ X~,) and there is a projection T of 

X onto X,, with II T[I--< 1 + 3'. Hence, again, a standard perturbation argument 

yields the existence of a projection V of X onto Y such that Ilvll_- < 
(1 + 3')2(1 - 3')-' =< 1 + 43' and II v -  TII ~ 23'. Clearly Oo V is a projection of X 

onto Z and hence O = Qo Vfx,, is a projection of Xo onto Z with IIOII---- 
(1 +83')(1 + 4 y ) <  1 + 2 0 y  such that 

II o - P,~,,II <= II oo v -  ~11  = II u p u - '  v - ~11  

II u p u - '  v -  p u  ' v II + II p u - '  v - p u - '  T II + II P U - '  T -  ~ II 

---- II U -  lllllPIIII U- '  IIII VII + UPIIII V-'llll V -  TII + IIPIIII rllll U- '  - III 

_--< 2y(1 + y)(1 + 4y) '  + (1 + y)(1 + 4y )2y  +2(1 + 7)27(1 +43')  

--< 203,. 
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This concludes the proof of Lemma 3. 

A direct consequence of Lemma 3 is the following: 

COROLLARY. Let P be a projection on 17 with II P II <= 1 + e, let {e, }~'-1 be the unit 

vector basis and let KC{1,2, . . - ,n}.  Assume that X (K)=span{e i }~K is a 

A-invariant subspace with A < 1/20. Then there is a projection Q on X ( K )  with 

H Q H --< 1 + 20A such that H Pei - Qe, H <= 20A for all i E K. 

l~ool~ oF THEOREM' 2. We first use the Proposition with R = P and ot = e to 

get a subset A (to be denoted by G~) which satisfies (*). If span{Pei }~o, = E 

then, by Lemma 1, the proof is complete because (*) implies that there exist 

integers i(1,1), i(1,2),. . . ,  i (1,h(1))in A and pairwise disjoint subsets GI.~, 

G,.2," " ", (];1.htl)of G~ such t ha t  IlPeitl.ijio,.jll--> 1 -- 0(e)  and for each q E G~ there 

is a j, l < j <- h(1) with llPeq = - Pe,o.,H < d/(e ). It follows that = {Pe,,,.,}j=~h"~'ls a basis 

of E as asserted. On the other hand, if span{Pc, },~o, ~ E we use Lemma 2 with 
G = Gt  and we get a subset K = K~ in the complement of G~ such that X(K~) is 

a A-invariant subspace (for the projection P). The Corollary implies that there is 

a projection O = O~ on the space X(K~) (which is isometrically isomorphic to 

1~ K,f) with 11o,11_--<1+/3 where /3=20,t. Moreover, for each i E K , ,  
II o ,  e, - Pc, II -</3. Using the Proposition with R = Q, and a =/3 we get a subset 
A - -  G2CK, which satisfies (*). Thus there exist integers i(2,1), 

i (2 ,2) , . . . , i (2 ,h(2))  in Ge with h (2 )> lK,  l(1-O(/3)) and these are pairwise 

disjoint subsets G2.,, G2.2,'", G2., of G2 such that II 1 - ~b(/3) and 

for each q E G 2 ,  IlO, for some j,l<-<_j<=h(2). Since 

IIPe, - O ,  e, II---/3 for all i E K, we get that 1 - r  and for 
each q E G2 there is a j, 1 <-j _-h(2), such that IlPe - Pe , ,= , , l l - - - -# , ( /3 )+2 /3 .  If 
span{Pc, },eo,uo~ = E then the proof is complete. If not, we use Lemma 2 with 

G = G, t2 Gz and we get a subset K = K2 of the complement of G~ U G2 such 
that X(K2) is A-invariant. On X(K2) -~ l~ K~I we have, by the Corollary, a "good" 

projection 02 which is "close" to P. Proceeding in this manner we get after m 

steps (m<-_k) pairwise disjoint sets G~,G2, . . ' ,Gm such that E =  

span{Pe,}~euT.,o~ and in each G~ we get pairwise disjoint subsets G~t, 
Gk.2,' ' ' , t-/k.h~ and h ( k )  distinct integers i(k,1), i ( k , 2 ) , . . . , i ( k , h ( k ) )  in Gk 

such that and for each q ~ G~ there is a j ,1-<j -< 

h(k) ,  with IIPe  - ~ #,(/3) + 2/3. Clearly the elements {Pe,~.,}~.~!'~%~ form 

a basis of E which is "close" to a natural l~ basis. This proves Theorem 2. 
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